声明:本模型复现笔记记录自己学习过程,如果有错误请各位老师批评指正。
本周复现了Wide&Deep Model、Wide Model、Deep Model、DeepFm Model、NFM Model
dataset:cretio数据集(选取了train 20000, test 5000)
Wide&Deep Model结合了Wide Model(LR)的记忆性和Deep Model的泛化能力,对于部署应用来说会提高用户的获取率和满意度,但是Wide&Deep的Wide part,需要专业的人员来发掘某些特征之间的共现关系,这就需要大量专业人工参与。
DeepFm Model 对Wide&Deep Model做了改进,对于Wide部分换成了FM Model具有了自动的特征组合能力。
NFM Model:是对FM、FFM的模型改进,FM、FFM其实就是一个二阶的特征交叉,它们会受到组合爆炸问题,限制了FM、FFM的表达能力。NFM 就利用DNN去拟合FM的二阶交叉特征。如果NFM一阶部分是线性模型,也可以看成是Wide&Deep的改进,只不过在Deep部分加了特征交叉池化层。
Wide&Deep Model

Wide部分的输入是原始特征(dense feature 和 经过Embeddings 的sparse feature)和交叉积特征转换数据
交叉积特征转换数据计算为:

Deep部分的输入是dense feature 和 经过Embeddings 的sparse feature

class Linear(nn.Module):
def __init__(self, input_dim):
super(Linear, self).__init__()
self.Linear = nn.Linear(in_features = input_dim, out_features = 1)
def forward(self, x):
return self.Linear(x)
class Dnn(nn.Module):
def __init__(self, hidden_units, dropout = 0.):
super(Dnn, self).__init__()
self.dnn_network = nn.ModuleList([nn.Linear(layer[0],layer[1]) for layer in list(zip(hidden_units[:-1] , hidden_units[1:]))])
self.dropout = nn.Dropout(p = dropout)
def forward(self, x):
for linear in self.dnn_network:
x = linear(x)
x = self.dropout(x)
x = F.relu(x)
return x
class WideandDeep(nn.Module):
def __init__(self, feature_columns, hidden_units, dnn_dropout = 0.):
super(WideandDeep, self).__init__()
self.dense_feature_cols, self.sparse_feature_cols = feature_columns
self.embed_layers = nn.ModuleDict({
'embed_' + str(i):nn.Embedding(num_embeddings = feat['feat_num'], embedding_dim = feat['embed_dim'])
for i ,feat in enumerate(self.sparse_feature_cols)
})
hidden_units.insert(0, len(self.dense_feature_cols) + len(self.sparse_feature_cols) * self.sparse_feature_cols[0]['embed_dim'])
self.dropout = nn.Dropout(p = dnn_dropout)
self.dnn_network = Dnn(hidden_units,dnn_dropout)
self.Linear = Linear(len(self.dense_feature_cols) + 1)
self.final_linear = nn.Linear(hidden_units[-1]+ 1, 1)
def forward(self, x):
dense_inputs , sparse_inputs = x[:,:len(self.dense_feature_cols)], x[:,len(self.dense_feature_cols):]
sparse_inputs = sparse_inputs.long()
sparse_embeds = [self.embed_layers['embed_'+str(i)](sparse_inputs[:,i]) for i in range(sparse_inputs.shape[1])]
sparse_embeds = torch.cat(sparse_embeds, axis = -1)
dnn_input = torch.cat([sparse_embeds, dense_inputs], axis=-1)
sparse_one_hot = [F.one_hot(sparse_inputs[:,i],sparse_inputs[:,i].max()+1) for i in range(sparse_inputs.shape[1]) ]
sparse_one_hot = torch.cat(sparse_one_hot,axis=-1)
sparse_one_hot = torch.tensor(sparse_one_hot)
sparse_one_hot = sparse_one_hot.reshape(dense_inputs.shape[0],-1)
c = torch.zeros(dense_inputs.shape[0] ,sparse_one_hot.shape[1] )
for i in range(0,dense_inputs.shape[0]):
c[i][1456]=1
c[i][16123]=1
cross = torch.prod(torch.pow(sparse_one_hot,c),axis = 1)
cross = cross.reshape(-1,1)
dense_input = torch.cat([dense_inputs,cross],axis=-1)
wide_out = self.Linear(dense_input)
deep_out = self.dnn_network(dnn_input)
output = torch.cat([wide_out, deep_out] ,axis = -1 )
outputs = F.sigmoid(self.final_linear(output))
return outputs
重点难点:Wide部分的交叉积特征转换数据不容易复现,我通过观察数据,找到了一个组合特征。
这是实现交叉积特征转换数据的主要代码:
流程:所有sparse feature转成one_hot编码 ,设置C矩阵(函数中做指数),利用torch.pow和torch.prod完成函数运算,最后拼接到wide的输入。
sparse_one_hot = [F.one_hot(sparse_inputs[:,i],sparse_inputs[:,i].max()+1) for i in range(sparse_inputs.shape[1]) ]
sparse_one_hot = torch.cat(sparse_one_hot,axis=-1)
sparse_one_hot = torch.tensor(sparse_one_hot)
sparse_one_hot = sparse_one_hot.reshape(dense_inputs.shape[0],-1)
c = torch.zeros(dense_inputs.shape[0] ,sparse_one_hot.shape[1] )
for i in range(0,dense_inputs.shape[0]):
c[i][1456]=1
c[i][16123]=1
cross = torch.prod(torch.pow(sparse_one_hot,c),axis = 1)
cross = cross.reshape(-1,1)
dense_input = torch.cat([dense_inputs,cross],axis=-1)
wide_out = self.Linear(dense_input)
效果:batch_size= 256,数据小容易过拟合,加入了L2正则化(0.005),dropout(0.3)


Wide Mode
仅仅是LR,输入数据是dense feature 和 经过embedding层的sparse feature
class Linear(nn.Module):
def __init__(self, feature_columns, dnn_dropout = 0.):
super(Linear, self).__init__()
self.dense_feature_cols,self.sparse_feature_cols = feature_columns
self.embed_layers = nn.ModuleDict({
'embed_'+str(i):nn.Embedding(num_embeddings = feat['feat_num'], embedding_dim = feat["embed_dim"])
for i, feat in enumerate(self.sparse_feature_cols)
})
input_dim = len(self.dense_feature_cols) + len(self.sparse_feature_cols) * self.sparse_feature_cols[0]['embed_dim']
self.Linear = nn.Linear(in_features = input_dim, out_features = 1)
def forward(self, x):
dense_inputs ,sparse_inputs = x[:,:len(self.dense_feature_cols)],x[:,len(self.dense_feature_cols):]
sparse_inputs = sparse_inputs.long()
sparse_embeds = [self.embed_layers['embed_'+str(i)](sparse_inputs[:,i])
for i in range(sparse_inputs.shape[1])]
sparse_embeds = torch.cat(sparse_embeds, axis = -1)
wide_inputs = torch.cat([dense_inputs,sparse_embeds] , axis = -1)
outputs = self.Linear(wide_inputs)
return F.sigmoid(outputs)
效果: batch_size= 256,L2正则化(0.005),dropout(0.3)


Deep Model:
class Dnn(nn.Module):
def __init__(self, feature_columns, hidden_units, dnn_dropout = 0.):
super(Dnn, self).__init__()
self.dense_feature_cols,self.sparse_feature_cols = feature_columns
self.embed_layers = nn.ModuleDict({
'embed_'+str(i):nn.Embedding(num_embeddings = feat['feat_num'], embedding_dim = feat["embed_dim"])
for i, feat in enumerate(self.sparse_feature_cols)
})
hidden_units.insert(0,len(self.dense_feature_cols) + len(self.sparse_feature_cols) * self.sparse_feature_cols[0]['embed_dim'])
self.dnn_network = nn.ModuleList([nn.Linear(layer[0],layer[1]) for layer in list(zip(hidden_units[:-1], hidden_units[1:]))])
self.dropout = nn.Dropout(p = dnn_dropout)
self.final_linear = nn.Linear(hidden_units[-1], 1 )
def forward(self, x):
dense_inputs ,sparse_inputs = x[:,:len(self.dense_feature_cols)],x[:,len(self.dense_feature_cols):]
sparse_inputs = sparse_inputs.long()
sparse_embeds = [self.embed_layers['embed_'+str(i)](sparse_inputs[:,i])
for i in range(sparse_inputs.shape[1])]
sparse_embeds = torch.cat(sparse_embeds, axis = -1)
dnn_inputs = torch.cat([dense_inputs,sparse_embeds] , axis = -1)
for layer in self.dnn_network:
dnn_inputs = layer(dnn_inputs)
dnn_inputs = F.relu(dnn_inputs)
output = F.sigmoid(self.final_linear(dnn_inputs))
return output
效果:batch_size= 256,L2正则化(0.005),dropout(0.3)


Wide&Deep Model VS Wide Model VS Deep Model
Wide&Deep Model 、 Wide Model 、 Deep Model 训练损失比较

Wide&Deep Model 、 Wide Model 、 Deep Model 训练AUC比较

Wide&Deep Model 、 Wide Model 、 Deep Model 测试集损失比较
Wide&Deep Model 、 Wide Model 、 Deep Model 测试集AUC比较

结论:Wide&Deep结合了记忆性和泛化性确实比朴素LR和朴素DNN效果好一点,论文中给出的三者的AUC几乎一样,文章中给出说明是利用cross-product feature去增加在线用户获取率,提高1%的效率对于大的互联网公司来说就可以获得巨大收益。

DeepFM

DeepFM对于Wide&Deep模型的改进是用FM替换了原来的Wide部分,加强了浅层网络部分特征组合的能力。同时,FM部分和DNN部分共享相同的EMbedding层。
左侧的FM部分对不同的特征域的EMbedding进行了两两交叉,即将Embedding向量当作原FM中的特征向量V。
class FM(nn.Module):
def __init__(self, latent_dim, fea_num):
super(FM, self).__init__()
self.latent_dim = latent_dim
self.w0 = nn.Parameter(torch.zeros([1,]))
self.w1 = nn.Parameter(torch.rand([fea_num, 1]))
self.w2 = nn.Parameter(torch.rand([fea_num, latent_dim]))
def forward(self, inputs):
first_order = self.w0 + torch.mm(inputs, self.w1)
second_order = 1/2 * torch.sum(torch.pow(torch.mm(inputs, self.w2), 2) - torch.mm(torch.pow(inputs,2), torch.pow(self.w2, 2)),dim = 1,keepdim = True)
return first_order + second_order
class Dnn(nn.Module):
def __init__(self, hidden_units, dropout=0.):
super(Dnn, self).__init__()
self.dnn_network = nn.ModuleList([nn.Linear(layer[0], layer[1]) for layer in list(zip(hidden_units[:-1], hidden_units[1:]))])
self.dropout = nn.Dropout(dropout)
def forward(self, x):
for linear in self.dnn_network:
x = linear(x)
x = F.relu(x)
x = self.dropout(x)
return x
class DeepFM(nn.Module):
def __init__(self, feature_columns, hidden_units, dnn_dropout=0.):
super(DeepFM, self).__init__()
self.dense_feature_cols, self.sparse_feature_cols = feature_columns
self.embed_layers = nn.ModuleDict({
'embed_' + str(i): nn.Embedding(num_embeddings=feat['feat_num'], embedding_dim=feat['embed_dim'])
for i, feat in enumerate(self.sparse_feature_cols)
})
self.fea_num = len(self.dense_feature_cols) + len(self.sparse_feature_cols)*self.sparse_feature_cols[0]['embed_dim']
hidden_units.insert(0, self.fea_num)
self.fm = FM(self.sparse_feature_cols[0]['embed_dim'], self.fea_num)
self.dnn_network = Dnn(hidden_units, dnn_dropout)
self.nn_final_linear = nn.Linear(hidden_units[-1], 1)
def forward(self, x):
dense_inputs, sparse_inputs = x[:, :len(self.dense_feature_cols)], x[:, len(self.dense_feature_cols):]
sparse_inputs = sparse_inputs.long()
sparse_embeds = [self.embed_layers['embed_'+str(i)](sparse_inputs[:, i]) for i in range(sparse_inputs.shape[1])]
sparse_embeds = torch.cat(sparse_embeds, dim=-1)
x = torch.cat([sparse_embeds, dense_inputs], dim=-1)
wide_outputs = self.fm(x)
deep_outputs = self.nn_final_linear(self.dnn_network(x))
outputs = F.sigmoid(torch.add(wide_outputs, deep_outputs))
return outputs
效果:batch_size= 256,L2正则化(0.006),dropout(0.4)


DeepFM VS Wide&Deep

结论: DeepFM具有自动进行特征组合的能力,效果还是比wide&deep效果要好。但是epoch=4前 wide&deep优于DeepFM的原因:我认为是FM的随机初始化导致的auc比wide&deep低。
NFM Model

NFM是对FM、FFM的模型改进,FM、FFM其实就是一个二阶的特征交叉,它们会受到组合爆炸问题,限制了FM、FFM的表达能力。

之前看到过一句话“深度学习网络理论上有拟合任何复杂函数的能力”,就是用DNN来拟合表达能力更强的函数。
NFM 就利用DNN去拟合FM的二阶交叉特征。
如果NFM一阶部分是线性模型,也可以看成是Wide&Deep的改进,只不过在Deep部分加了特征交叉池化层。
模型的其他层都与前面一样含义,新添加的是Bi-interaction Pooling layer。
Bi-interaction Pooling layer:

其中前一层中的Embeding层Vx = [ x1v1,x2v2,…,xnvn ]
在进行两两Embedding向量的元素积操作后,对交叉特征向量取和,得到池化层的输出向量。
然后再把该向量输入到下一层的DNN中,进行进一步的交叉特征。
注意: 设计模型时不要忘了一阶函数。
class Dnn(nn.Module):
def __init__(self, hidden_units, dropout=0.):
super(Dnn, self).__init__()
self.dnn_network = nn.ModuleList([nn.Linear(layer[0], layer[1]) for layer in list(zip(hidden_units[:-1], hidden_units[1:]))])
self.dropout = nn.Dropout(dropout)
def forward(self, x):
for linear in self.dnn_network:
x = linear(x)
x = F.relu(x)
x = self.dropout(x)
return x
class NFM(nn.Module):
def __init__(self, feature_columns, hidden_units, dnn_dropout=0.):
super(NFM, self).__init__()
self.dense_feature_cols, self.sparse_feature_cols = feature_columns
self.embed_layers = nn.ModuleDict({
'embed_' + str(i): nn.Embedding(num_embeddings=feat['feat_num'], embedding_dim=feat['embed_dim'])
for i, feat in enumerate(self.sparse_feature_cols)
})
self.fea_num = len(self.dense_feature_cols) + self.sparse_feature_cols[0]['embed_dim']
hidden_units.insert(0, self.fea_num)
self.bn = nn.BatchNorm1d(self.fea_num)
self.dnn_network = Dnn(hidden_units, dnn_dropout)
input_dim = len(self.dense_feature_cols) + len(self.sparse_feature_cols) * self.sparse_feature_cols[0]['embed_dim']
self.Linear = nn.Linear(input_dim,32)
self.nn_final_linear = nn.Linear(hidden_units[-1], 1)
def forward(self, x):
dense_inputs, sparse_inputs = x[:, :len(self.dense_feature_cols)], x[:, len(self.dense_feature_cols):]
sparse_inputs = sparse_inputs.long()
sparse_embeds = [self.embed_layers['embed_'+str(i)](sparse_inputs[:, i]) for i in range(sparse_inputs.shape[1])]
L_sparse_embeds = torch.cat( sparse_embeds,axis = -1)
sparse_embeds = torch.stack(sparse_embeds)
sparse_embeds = sparse_embeds.permute((1, 0, 2))
embed_cross = 1/2 * (
torch.pow(torch.sum(sparse_embeds, dim=1),2) - torch.sum(torch.pow(sparse_embeds, 2), dim=1)
)
lr_input = torch.cat([dense_inputs,L_sparse_embeds],axis = -1)
lr_output = self.Linear(lr_input)
x = torch.cat([embed_cross, dense_inputs], dim=-1)
x = self.bn(x)
dnn_outputs = self.nn_final_linear(self.dnn_network(x)+ lr_output)
outputs = F.sigmoid(dnn_outputs )
return outputs
效果:batch_size= 256,L2正则化(0.003),dropout(0.25)


NFM VS DeepFM VS Wide&Deep

Wide&Deep、DeepFM模型是使用的拼接操作,而不是Bi-Interaction.
拼接操作最大的缺点是他并没有考虑任何特征组合信息,全部依靠后面的DNN去学习特征组合,但是DNN的学习优化非常困难。
使用Bi-Interaction就考虑到了二阶组合特征,使得输入到DNN层中数据包含更多的信息,减轻了DNN的学习困难。